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II Semester M.Sc. Degree Examination, June/July 2014
(NS) (2006 Scheme)

MATHEMATICS
M - 204 : Partial Differential Equations

Time : 3 Hours Max. Marks : 80

Instructions : 1) Answer any five questions choosing at least two from
each Part.

2) All questions carry equal marks.

PART – A

1. a) Define linear, semilinear, quasilinear and nonlinear equations of first order
partial differential equation with an example each. Explain the method of
characteristics for solving quasilinear partial differential equation.

a (x, y, u) ux + b (x, y, u) uy = c (x, y, u) 6

b) Solve the following by the method of characteristics
i) ux+ uy + u =1 with u = sinx on y = x + x2

ii) u ux + uy = 1 with u = 0 on y2 = 2x. 10

2. a) Solve the Cauchy problem yux + xuy = u

With the Cauchy data

u (x, 0) = x3, u (0, y) = y3 5

b) Solve the initial value problem

tR,x0,xu.utu ∈=+ > 0
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c) Solve the problem

p2x + qy – u = 0 with u = – x on y = 1 5
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3. a) Solve :
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b) Classify the equation :
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and reduce it to its canonical form. 5

c) Solve by Monges method

rq2 – 2pqs + tp2 = pt – qs 5

4. a) Explain the method  of solving the equation

Rr + Ss + Tt + U(rt – s2) = V

Where R, S, T, U, V are functions of x, y, z, p and q. 6

b) Write down the necessary condition for the extremization of the functional

.dydx)u,u,u,y,x(f)]y,x(u[I
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Using this result make a weak formulation of .0
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c) Verify whether

x3uxx+ (y2 + yz) uyy + (x+y)2 uzz + 3x2ux + (2y + z) uy = 0 is self adjoint
or not. 5
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PART – B

5. a) Solve the Neumann problem for a circle. 8

b) Show that a separable solution of the Laplace’s equation in cylindrical polar
coordinates yields a Bessel differential equation. 8

6. a) Using an appropriate Fourier transform obtain the D′Alembert solution of the
Cauchy problem involving a one dimensional wave equation
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7. a) Using Duhamel’s principle obtain the solution of the IBVP. 8
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b) Illustrate Green’s function approach for a simple parabolic partial differential
equation. 8
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8. a) Using a suitable partial differential equation with two independent variables
explain the concept of a similarity transformation and hence obtain the
resulting ordinary differential equation. 8

b) Obtain a series solution in x and y of the

BVP : xux + uy = 3u2 ;

   u(x, 0) = x2, u(0, y) = 0. 8
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